Poster presentation:

First record of a root community in Southeast Asia: cave-dwelling planthoppers from Maros karst, Sulawesi (Hemiptera: Fulgoromorpha: Cixiidae: Bennini)

Andreas Wessel* 1, 2, Roland Mühlethaler 1, Kristina von Rintelen 1, Thomas von Rintelen 1, Björn Stelbrink 1, Ekkehard Wachmann 1, Hannelore Hoch 1

1 Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
2 Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Hüfferstraße 1, D-48159 Münster, Germany

A systematic survey of Maros karst caves in summer 2009 revealed the first known terrestrial cave with roots in the dark zone and an associated fauna for Southeast Asia. Remarkably, this very first discovery of available resources for a root community in the region coincides with the finding of planthoppers as sap-sucking primary consumers. Planthoppers are common elements of root communities in different parts of the world. A total of more than 50 cave-dwelling species are known from Africa (incl. Madagascar), Australia, Latin America, and several oceanic islands. Two-thirds of the troglobiotic and troglophilic species belong to the Cixiidae as well as the newly discovered species from Sulawesi. The Maros cave planthoppers however, are the first representatives of the tribe Bennini ever recorded in a subterranean environment. The Bennini (about 100 species) are characterised by a unique feature – they possess very conspicuous lateral appendages each ending in a wax-covered sensillum. The precise function of these appendages and a possible role in orientation in the dark is unknown as in general the biology of this group is poorly studied. It is assumed that the ability of planthoppers to communicate by substrate vibrations is a prerequisite for the colonisation of cave environments. A well-studied example from Hawaii shows species-specific “song” patterns and revealed a complex pattern of subterranean speciation. The successful recording of vibrational signals from the Maros cave planthopper may open up a new model system for the study of the dynamics of subterranean evolution.
First record of a root community in Southeast Asia: troglophilic planthoppers from Maros karst, Sulawesi (Hemiptera: Fulgoromorpha: Cixiidae: Bennini)

Andreas Wessel1,2, Roland Mühlethaler1, Kristina von Rintelen1, Thomas von Rintelen1, Björn Stelbrink1, Ekkehard Wachmann1 & Hannenore Hoch1

1 Museum für Naturkunde – Leibnitz-Institute for Research on the Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
2 Institute for Evolution and Biodiversity, University Münster, Hüfferstraße 1, D-48159 Münster, Germany

*Correspondence: andreas.wessel@mfn-berlin.de

A systematic survey of Maros karst caves in summer 2009 revealed the first known terrestrial cave with roots in the dark zone and an associated fauna for Southeast Asia (cf. Deharyang & Rodos 2000). Remarkably, this very first discovery of available resources for a root community in the region coincides with the finding of planthoppers as sap-sucking primary consumers (Fig. 1-4).

Planthoppers are common elements of root communities in different parts of the world. A total of more than 50 cave-dwelling species are known from Africa (incl. Madagascar), Australia, Latin America, and several oceanic islands. Two-thirds of the troglobitic and troglophilic species belong to the Cixiidae, as does the newly discovered species from Sulawesi. (Fig. 7, Hoch & Wessel 2006)

The Maros cave planthoppers, however, are the first representatives of the tribe Bennini ever recorded in a subterranean environment. The Bennini are characterized by a unique feature – they possess very conspicuous lateral appendages each ending in a wax-covered sensillum (Fig. 1 & 3, inset). The precise function of these appendages and a possible role in orientation in the dark is unknown as in general the biology of this group is poorly studied. However, about 20 Bennini species are described, but a current taxonomic revision will raise the number above 100 species (Hoch, in prep.). The Maros Bennini will be described as new species in a newly erected genus (Hoch et al., in prep.).

The animals reported here show no significant troglobiotic, however, they are also not known from epigean samples. Planthopper nymphs feed on roots and can be defined as terrestrial planthopper fauna. Wandering into caves, the emerging adults can survive and reproduce from the onset in the dark zone without further adaptation necessary and then develop troglobism in the course of an rapid adaptive shift (see Howarth & Hoch 2004; Wessel et al. 2007). We could describe them as expected entroglophilic accidentals (cf. Shik 2008).

It is assumed that the ability of planthoppers to commmunicate by substrate vibrations is a prerequisite or uptake for the colonization of cave environments (Hoch & Wessel 2006). A well-studied example from Hawaii shows species-specific "song" patterns and revealed a complex pattern of subterranean speciation (Wessel & Hoch 1999, Wessel 2008). The successful recording of vibrational signals from the Maros cave planthopper (Fig. 5) may open up a new model system for the study of the dynamics of subterranean evolution.

References


Wessel, A. & Hoch, H. 1999. Planthoppers in a karst cave from the Philippine island Balabac. The animals belong to a known epigean species. This find is accompanied by several new cave-dwelling species. Higher-diverse Caves. 9: 19-27.